36. Metal Complexes with Macrocyclic Ligands

Part XXXV¹)

Stabilities of Some Bivalent Metal-Ion Complexes with 1,4,7-Triazacyclononane-1-acetic Acid

by Hui-Zhi Cai and Thomas A. Kaden*

Institute of Inorganic Chemistry, Spitalstr. 51, CH-4056 Basel

(4.XII.92)

The stability constants of the Mn^{2+} , Zn^{2+} , Ni^{2+} , Pb^{2+} , and Cd^{2+} complexes with 1,4,7-triazacylononane-1acetic acid (noma) were determined at 25° and 0.5M (KNO₃) by potentiometric titrations. The species [ML] and [ML(OH)] were found in all cases except for Ni²⁺, whereas [ML₂] was only detected for Cd²⁺. For the complexes [ML], the order of stability is $Mn^{2+} < Cd^{2+} < Pb^{2+} < Zn^{2+} < Ni^{2+} < Cu^{2+}$, which is consistent with the *Irving-Williams* series.

Introduction. – Functionalization of azamacrocycles through side chains with ligating groups leads to new compounds which possess interesting properties with respect to their complexation with metal ions [2]. Several studies on tetrasubstituted tetraazamacrocycles have appeared [3], but much less is known on the complexation of mono-*N*-substituted derivatives. The preparation of such compounds is relatively easy, when a carboxylic group as for 1,4,7-triazacyclononane-1-acetic acid (noma) is introduced in the side chain [4]. noma has an additional ligating group compared to the parent compound 1,4,7-triazacyclononane ([9]aneN₃), for which the stability of the complexes with some bivalent metal ions (Cu^{2+} , Ni^{2+} , Cd^{2+} , Pb^{2+} , and Hg^{2+}) was investigated [5–7]. For [9]aneN₃, the permutation of the *Irving-Williams* order [8] for the Cu^{2+} - and Ni^{2+} complexes was found [6].

There is only one study on the stability constants and on the structure of the Cu^{2+} complexes with noma [9]. Thereby the species [CuL], [CuL(OH)], [CuL₂], and

 $[(CuL)_2(OH)]$ were found, and $[(CuL)(ClO_4)]$ and $[(CuL)_2(OH)(ClO_4)]$ were characterized by X-ray structure analysis. It was, therefore, interesting to pursue the study of the complexes of noma with other bivalent metal ions.

Experimental. – The ligand 1,4,7-triazacyclononane-1-acetic acid (noma) was synthesized as described in [4]. All other reagents, being of anal. grade (*Merck*), were used without further purification. The potentiometric titrations were performed at 25° and I = 0.5M (KNO₃) with 0.4M NaOH. The titrations of the Pb²⁺, Cd²⁺, Zn²⁺, and Mn²⁺ complexes were run under N₂ on an automatic microprocessor-controlled potentiometric titrator, as reported in [10]. The equilibration of the Ni²⁺ complexes, being too slow for the automatic titrator, was measured using a batch technique, in which premixed solns. of Ni²⁺ and ligand at different pH values were kept in a thermostated water bath for 2 d, until constant pH values were reached. The pH electrode was calibrated with two buffer solns. of pH 4 and of pH 7 and checked daily. The concentrations of noma and of the metal ions are listed in *Table 1*.

M ²⁺	$C_{\mathrm{L}} \cdot 10^3 \mathrm{[m]}$	$C_{\mathbf{M}} \cdot 10^3$ [м]	C _M /C _L [%]	
Mn ²⁺	3.99	3.55	96	
	3.99	1.77	44	
	1.95	1.42	73	
Cd ²⁺	3.87	3.69	95	
	3.48	1.41	41	
	1.93	1.77	92	
Pb ²⁺	3.89	3.55	91	
	3.89	2.13	55	
	1.95	1.42	73	
Zn ²⁺	3.95	3.54	90	
	4.00	2.83	71	
	3.86	1.77	46	
	2.00	1.77	89	
Ni ²⁺	1.94	1.75	90	
	1.93	0.98	51	
	1.88	1.69	90	
no M ²⁺	3.92			
	3.93			

Table 1. Concentrations of Metal Ions (C_M) and noma (C_L) for the Potentiometric pH Titrations

Results and Discussion. – The protonation constants of the ligand and the stability constants of the complexes were evaluated by fitting a set of two-to-four titration curves with the program TITFIT [10] [11]. A typical example showing the quality of the fit is given in Fig. 1.

The definitions of the protonation and stability constants of the species used are given in Eqns. 1-4 (charges omitted).

$$LH_{n-1} + H^+ \rightleftharpoons LH_n \qquad K_n (n = 1-3)$$
(1)

$$\mathbf{M} + \mathbf{L} \rightleftharpoons \mathbf{M} \mathbf{L} \qquad K_{[\mathsf{M}\mathsf{L}]} \tag{2}$$

$$[ML] + L \rightleftharpoons [ML_2] \qquad K_{[ML_2]} \tag{3}$$

$$[ML(OH)] + H^{+} \rightleftharpoons [ML] \qquad K_{(ML(OH))} \qquad (4)$$

Fig. 1. Potentiometric titration curves of the Pb^{2+} complexes with noma (\blacksquare : $C_L = 3.89 \cdot 10^{-3}$ M, $C_M = 3.55 \cdot 10^{-3}$ M; \blacktriangledown : $C_L = 3.89 \cdot 10^{-3}$ M, $C_M = 2.13 \cdot 10^{-3}$ M; \Box : $C_L = 1.95 \cdot 10^{-3}$ M, $C_M = 1.42 \cdot 10^{-3}$ M). Curves calculated with the model [PbL], [PbL(OH)].

The protonation constants obtained in this work (*Table 2*) are in good agreement with those reported in [9].

	$\log K_1$	$\log K_2$	log K ₃	$\log K_{[ML]}$	$\log K_{[ML2]}$	log K _[MLOH]	$\sigma_{\rm ml} \cdot 10^3$
noma	11.44(1)	7.46(2)	2.81(3)				1.4
noma [9]	11.47	7.45	2.82				
Mn ²⁺				8.53(1)		11.02(1)	2.2
Cd ²⁺				11.67(1)	4.96(2)	11.01(1)	1.5
Pb ²⁺				13.11(1)		12.34(1)	1.6
Zn^{2+}				14.24(1)		10.59(1)	2.0
Ni ²⁺				17.85(3)			2.3
$Cu^{2+}[9]$				18.99(1)	5.79(1)	9.39(1) ^a)	

Table 2. Protonation and Stability Constants of the Complexes with noma at 25° and $I = 0.5 M (KNO_3)$

In the metal-ligand titrations, [ML] is usually the dominant species over a wide pH range, although, at high pH, [ML(OH)] is also present in most cases. Only for Ni^{2+} , it was difficult to ascertain, which other species besides [NiL] is present at pH > 10, because only few experimental points were available, as limited by the batch technique.

559

The magnitude of σ_{ml} indicates that only the model with the species [ML] and [ML(OH)] fits the experimental data best for Mn²⁺ and Zn²⁺. Test with other models gave no improvement of the fit.

 $[ML_2]$ was only found for Cd^{2+} . The model with additional species such as $[CdL_2H]$ slightly improved the fit ($\sigma_{ml} = 1.3 \cdot 10^{-3}$) over the model with the species [CdL], $[CdL_2]$, and [CdL(OH)] ($\sigma_{ml} = 1.5 \cdot 10^{-3}$). However, since $[CdL_2H]$ is only formed to less than 5% and the F-test [12] indicates no significant improvement of the fit, we consider the simpler model as the best one.

The interpretation of the equilibria for Pb^{2+} is somewhat ambiguous. The model with only one species [PbL] gave a poor fit of the experimental data, as shown in *Table 3*. A reasonable fit, however, could be achieved when a second species was added.

[PbL]	[PbLOH]	[PbL ₂]	[Pb ₂ L ₂ OH]	$\sigma_{\rm rnl} \cdot 10^3$
X				3.2
×	×			1.5
×			×	1.7
×		×		2.8
×	×	×		1.4
×	×		×	1.4
×	×	×	×	1.2

Table 3. Results of the Calculations with Different Models for Pb²⁺

The model with [PbL] and [PbL(OH)] fits the pH titrations best among those with only two species. The addition of a third or even a fourth complex to the model slightly decreased the standard deviation, but again the F-test shows no significance and the species are formed to less than 5%. Thus, the model with [PbL] and [PbL(OH)] is to be preferred over the other ones.

The species distribution (*Fig.2*) shows that [PbL(OH)] starts to be formed at relatively high pH value and exists up to only 15% under the experimental conditions.

Table 2 reveals that for the complexes [ML] the order of stability is $Mn^{2+} < Cd^{2+} < Pb^{2+} < Zn^{2+} < Ni^{2+} < Cu^{2+}$, which is consistent with the *Irving-Williams* series $Mn^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2+}$ [8].

It is interesting to compare the stability constants of noma with those of the openchain analogues sdtma and udtma and of the parent ligand [9]aneN₃ (*Table 4*). The stability constants of [ML] for Zn^{2+} and Cu^{2+} are about one order of magnitude larger for noma than for the open-chain ligands sdtma and udtma, while that for Ni²⁺ is about three orders of magnitude larger. The small macrocyclic effect observed for [CuL] with noma

Table 4. Stability Constants of the Complexes with sdtma [13], udtma [13], and [9] ane N_3 [14] at 25° and I = 0.1 M

		Mn ²⁺	Cd ²⁺	Pb ²⁺	Zn ²⁺	Ni ²⁺	Cu ²⁺
sdtma	log K _[ML]				13.13	14.37	18.07
udtma	$\log K_{[ML]}$				12.94	14.40	17.29
[9]aneN ₃	$\log K_{[ML]}$	5.8	9.5	10.3	11.3	12.4	15.4
	$\log K_{[ML_2]}$	3.6	8.4	5.1	9.2	6.8	12.01

560

 $\blacksquare: Pb^{2+}; +: [PbL]; \forall: [PbL(OH)].$

was interpreted as a consequence of the very favorable facial coordination of the three N-atoms of the ligand [9]. noma, which has one pendant arm, probably meets the geometrical requirement of M^{2+} ($M^{2+} = Mn^{2+}$, Cd^{2+} , Pb^{2+} , Zn^{2+} , Ni^{2+}) better than the open-chain ligands sdtma and udtma.

In the case of [9]aneN₃, the permutation of the *Irving-Williams* order for the stability of [CuL] and [NiL] and no macrocyclic effect for [CuL] was found [6]. This is interpreted by the fact that [9]aneN₃ is sterically constrained to facial coordination, while meridional coordination is preferred by Cu^{2+} . This results in a destabilization of [CuL] with respect to [NiL].

Two conclusions can be drawn from the comparison of the results shown in *Table 2* and 4. First, in the present work [ML] and [ML(OH)] were generally found, whereas $[ML_2]$ was only detected for Cd²⁺. In contrast, for [9]aneN₃ the complexes $[ML_2]$ are present in all cases and [ML(OH)] was only observed for Cu²⁺ [6]. Secondly, the introduction of an additional ligating group into [9]aneN₃, leads to an increase in the stability for

[ML] and a decrease in the stability for $[ML_2]$. This can be understood by the fact that the carboxylate group of the side chain can form an additional bond in [ML], but hinders the formation of $[ML_2]$ by steric constraints.

This work was supported by the Swiss National Science Foundation (project No. 20-32137.91).

REFERENCES

- [1] A. Schiegg, A. Riesen, Th. A. Kaden, Helv. Chim. Acta 1991, 74, 1689.
- [2] Th. A. Kaden, Topics Curr. Chem. 1984, 121, 157.
- [3] A. Stetter, W. Frank, Angew. Chim. 1976, 88, 780; S. Buoen, J. Dale, P. Groth, P. Krane, J. Chem. Soc., Chem. Commun. 1977, 1172; H. Häfliger, Th. A. Kaden, Helv. Chim. Acta 1979, 62, 683; K. P. Wainwright, J. Chem. Soc., Dalton Trans. 1980, 2117; A. Stetter, W. Frank, R. Mertens, Tetrahedron 1981, 37, 767; I. Murase, M. Mikuriya, H. Sonoda, S. Kida, J. Chem. Soc., Chem. Commun. 1984, 692; A. Riesen, M. Zehnder, Th. A. Kaden, Helv. Chim. Acta 1986, 69, 2067; I. Murase, M. Mikuriya, H. Sonoda, Y. Fukuda, S. Kida, J. Chem. Soc., Dalton Trans. 1986, 953; A. Riesen, M. Zehnder, Th. A. Kaden, Acta Crystallogr., Sect. C 1988, 44, 1740.
- [4] M. Studer, Th.A. Kaden, Helv. Chim. Acta 1986, 68, 2081.
- [5] M. Kodama, E. Kimura, J. Chem. Soc., Dalton Trans. 1978, 1081.
- [6] R. Yang, L.J. Zompa, Inorg. Chem. 1976, 15, 1499.
- [7] L.J. Zompa, Inorg. Chem. 1978, 17, 2531.
- [8] H. Irving, R. J. P. Williams, J. Chem. Soc. 1953, 3192.
- [9] M. Studer, A. Riesen, Th. A. Kaden, Helv. Chim. Acta 1989, 72, 307.
- [10] H. Gampp, M. Maeder, A. D. Zuberbühler, Th. A. Kaden, Talanta 1980, 27, 513.
- [11] A.D. Zuberbühler, Th.A. Kaden, Talanta 1982, 29, 201.
- [12] Ph. R. Bevington, 'Data Reduction and Error Analysis for the Physical Sciences', McGraw-Hill, New York, 1969.
- [13] G. McLendon, D.T. MacMillan, M. Hariharan, A.E. Martell, Inorg. Chem. 1975, 14, 2322.
- [14] M. R. Squillante, Ph. D. Thesis 1980, Tufts University, MA, mentioned in Ph. Chaudhuri, K. Wieghardt, Prog. Inorg. Chem. 1987, 35, 329.